Back to Blog
May 25, 2023
Pratyusha
en

100+ Real-Life Examples of Reinforcement Learning And It's Challenges

Data Science
Emerging Technologies
Future
100+ Real-Life Examples of Reinforcement Learning And It's Challenges

The Global Machine Learning Market Size is expected to reach $302.62 billion by 2030 at a rate of 38.1%. 

The convergence of ample data and powerful computing resources facilitates the widespread adoption and growth of machine learning in industries like healthcare, finance, and autonomous systems.

ML and AI infographic

What are Machine Learning and Reinforcement Learning?

Machine learning (ML) enables computers to carry out certain tasks intelligently by learning from examples or data rather than by following pre-programmed rules, allowing computers to carry out complex procedures.

While ML algorithms excel at supervised or unsupervised learning tasks, Reinforcement Learning (RL) is designed to handle sequential decision-making problems where an agent interacts with an environment. 

RL algorithms learn from trial and error, receiving feedback in the form of rewards or penalties to optimize their behavior over time. Example - Imagine you are playing a game and you want to win. RL is like figuring out the best moves by playing the game over and over again and getting feedback. You learn which actions give you good results (like getting points) and which actions give you bad results (like losing points).

meme

source

Why is the need for Reinforcement Learning rising?

The need for RL has arisen due to the limitations of traditional machine learning approaches.

While supervised and unsupervised learning techniques are effective in tasks with labeled or unlabeled data, they struggle with problems involving sequential decision-making and dynamic environments. RL addresses these challenges by introducing a framework where an agent learns to make optimal decisions through trial and error interactions with the environment. 

RL is particularly valuable in domains where actions have delayed consequences and where an agent must learn to balance short-term rewards with long-term goals. RL empowers machines to adapt and improve their behavior based on feedback, making it a crucial tool for solving complex problems where sequential decision-making and real-time adaptation are necessary.

100+ Real-Life Examples of Reinforcement Learning

Along with RL real world examples, there are perspectives of renowned researchers and experts in the field of Reinforcement Learning. These quotes reflect their insights and expertise on the subject showcasing its potential.

Gaming

quote
Reinforcement Learning is transforming game development by enabling AI systems to learn and improve in real-time, enhancing gameplay mechanics, and creating more intelligent and compelling virtual worlds. - Tim Sweeney, CEO of Epic Games
  1. OpenAI Five, learned to play the complex multiplayer online battle game Dota 2 at a high level. It competed against professional human players and showcased advanced strategic decision-making.

  2. DeepMind used RL techniques to train AlphaGo to play the ancient board game Go. By playing millions of games against itself, AlphaGo improved its strategies and went on to defeat world champions, demonstrating the power of RL in mastering complex games.

  3. Project Malmo is an RL platform developed by Microsoft that integrates with the popular game Minecraft. It allows researchers to use RL techniques to train agents within the Minecraft environment. RL agents can learn to navigate, build structures, and interact with the game world, showcasing adaptive and intelligent behavior.

  4. Ubisoft has implemented RL techniques in the development of Assassin's Creed game series. RL algorithms are used to train AI agents that control non-player characters (NPCs) in the game. These AI agents learn to exhibit realistic and diverse behaviors, enhancing the immersion and realism of the game world.

  5. DeepMind's AI system mastered the real-time strategy game StarCraft II using RL techniques. The RL agent learned to strategize, manage resources, and make tactical decisions to outperform human players.

Healthcare

quote
It is possible only with Reinforcement Learning to develop AI systems that learn from large-scale healthcare data to enhance disease prediction and early intervention - Ziad Obermeyer, Associate Professor, University of California
  1. Massachusetts General Hospital uses RL to optimize the personalized dosing of blood thinning medications, such as warfarin, for patients. The RL agent learns from patient data to recommend individualized doses, reducing the risk of adverse events and improving treatment outcomes.
  2. IBM Watson is an RL-based clinical decision support system that assists oncologists in cancer treatment decision-making. It analyzes patient data and medical literature to provide evidence-based treatment recommendations, aiding physicians in creating personalized care plans.
{% module_block module "widget_f7fb0eaa-40be-4214-9bbf-93bea83af336" %}{% module_attribute "child_css" is_json="true" %}{% raw %}{}{% endraw %}{% end_module_attribute %}{% module_attribute "css" is_json="true" %}{% raw %}{}{% endraw %}{% end_module_attribute %}{% module_attribute "definition_id" is_json="true" %}{% raw %}null{% endraw %}{% end_module_attribute %}{% module_attribute "field_types" is_json="true" %}{% raw %}{"image_desktop":"image","image_link":"link","image_mobile":"image"}{% endraw %}{% end_module_attribute %}{% module_attribute "image_desktop" is_json="true" %}{% raw %}{"alt":"Blog-Listing-Ad-_4_-2","height":300,"loading":"lazy","max_height":300,"max_width":1200,"size_type":"auto","src":"https://odinschool-20029733.hs-sites.com/hubfs/Blog-Listing-Ad-_4_-2.webp","width":1200}{% endraw %}{% end_module_attribute %}{% module_attribute "image_link" is_json="true" %}{% raw %}{"no_follow":false,"open_in_new_tab":true,"rel":"noopener","sponsored":false,"url":{"content_id":null,"href":"https://www.odinschool.com/datascience-bootcamp","href_with_scheme":"https://www.odinschool.com/datascience-bootcamp","type":"EXTERNAL"},"user_generated_content":false}{% endraw %}{% end_module_attribute %}{% module_attribute "image_mobile" is_json="true" %}{% raw %}{"alt":"Mobile-version-of-blog-ads-_1_-Sep-04-2023-11-58-57-5902-AM","height":300,"loading":"lazy","max_height":300,"max_width":500,"size_type":"auto","src":"https://odinschool-20029733.hs-sites.com/hubfs/Mobile-version-of-blog-ads-_1_-Sep-04-2023-11-58-57-5902-AM.webp","width":500}{% endraw %}{% end_module_attribute %}{% module_attribute "label" is_json="true" %}{% raw %}null{% endraw %}{% end_module_attribute %}{% module_attribute "module_id" is_json="true" %}{% raw %}132581904694{% endraw %}{% end_module_attribute %}{% module_attribute "path" is_json="true" %}{% raw %}"/OdinSchool_V3/modules/Blog/Blog Responsive Image"{% endraw %}{% end_module_attribute %}{% module_attribute "schema_version" is_json="true" %}{% raw %}2{% endraw %}{% end_module_attribute %}{% module_attribute "smart_objects" is_json="true" %}{% raw %}null{% endraw %}{% end_module_attribute %}{% module_attribute "smart_type" is_json="true" %}{% raw %}"NOT_SMART"{% endraw %}{% end_module_attribute %}{% module_attribute "tag" is_json="true" %}{% raw %}"module"{% endraw %}{% end_module_attribute %}{% module_attribute "type" is_json="true" %}{% raw %}"module"{% endraw %}{% end_module_attribute %}{% module_attribute "wrap_field_tag" is_json="true" %}{% raw %}"div"{% endraw %}{% end_module_attribute %}{% end_module_block %}

 

  1. Google employed RL techniques to develop Flu Trends, a system that uses search queries to monitor and predict flu outbreaks. The RL agent learned from historical flu data to detect patterns and provide real-time estimates of flu activity, assisting in disease monitoring and control efforts.
  2. Mount Sinai developed an RL-based system to personalize insulin dosing for patients with diabetes. The RL agent learned from patient glucose monitoring data to optimize insulin delivery, resulting in improved glucose control and better management of the disease.
  3. The da Vinci Surgical System, widely used in robotic-assisted surgeries, employs RL techniques. The RL agent learns from expert surgeon demonstrations to assist surgeons in performing minimally invasive procedures with enhanced precision and dexterity.

Retail

quote
Reinforcement Learning holds immense potential in the retail industry, allowing retailers to gain a deep understanding of customer preferences, optimize pricing and promotions, and deliver personalized experiences that drive loyalty and growth." - Satya Ramaswamy, Managing Director, IBM Watson Customer Engagement
  1. Tesco, a multinational retailer, uses RL for assortment planning. RL agents learn from sales data, customer preferences, and market trends to optimize product assortments, ensuring that the right products are available at the right stores, improving customer satisfaction and sales.

  2. Kroger, a grocery store chain, leverages RL to optimize store layouts. The RL agent learns from customer foot traffic patterns, sales data, and product relationships to determine the optimal arrangement of products, improving customer flow and maximizing sales.

  3. Shopify, an e-commerce platform, utilizes RL algorithms for fraud detection. The RL agent learns from historical transaction data and user behavior patterns to identify and prevent fraudulent activities, protecting merchants and customers from financial losses.

  4. Amazon utilizes RL algorithms to dynamically optimize pricing for its products. The RL agent learns from customer behavior, competitor prices, and market conditions to adjust prices in real-time, maximizing revenue and maintaining competitiveness.

  5. Alibaba employs RL techniques to optimize its supply chain operations. RL agents learn from historical data, transportation logistics, and demand forecasts to optimize warehouse operations, inventory allocation, and delivery routes, improving efficiency and reducing costs.

Supply Chain

quote
Reinforcement Learning empowers supply chain professionals to transform their operations by leveraging data-driven insights to optimize inventory, improve responsiveness, and deliver exceptional customer experiences.                                     - Dr. Mahender Singh, Chief Data Scientist, United Parcel Service (UPS)
  1. Procter & Gamble (P&G) utilizes RL algorithms to optimize its inventory management. RL agents learn from demand patterns, lead times, and stock levels to determine optimal reorder points and quantities, minimizing stockouts and excess inventory.

  2. UPS utilizes RL algorithms to optimize delivery routes. RL agents learn from real-time traffic data, package volumes, and customer time windows to dynamically adjust route plans, reducing fuel consumption and improving delivery efficiency.

  3. Proximus, a Belgian telecommunications company, uses RL for supplier selection and negotiation. RL agents learn from supplier performance data, pricing models, and contract terms to optimize supplier selection and negotiate favorable agreements.

  4. DHL applies RL techniques in its transportation management operations. RL agents learn from historical shipment data, traffic conditions, and delivery constraints to optimize transport routing, load consolidation, and mode selection, enhancing overall logistics efficiency.

{% module_block module "widget_053937ab-193d-43ae-8084-82b6dfb27463" %}{% module_attribute "child_css" is_json="true" %}{% raw %}{}{% endraw %}{% end_module_attribute %}{% module_attribute "css" is_json="true" %}{% raw %}{}{% endraw %}{% end_module_attribute %}{% module_attribute "definition_id" is_json="true" %}{% raw %}null{% endraw %}{% end_module_attribute %}{% module_attribute "field_types" is_json="true" %}{% raw %}{"image_desktop":"image","image_link":"link","image_mobile":"image"}{% endraw %}{% end_module_attribute %}{% module_attribute "image_desktop" is_json="true" %}{% raw %}{"alt":"Blog-Listing-Ad-_4_-2","height":300,"loading":"lazy","max_height":300,"max_width":1200,"size_type":"auto","src":"https://odinschool-20029733.hs-sites.com/hubfs/Blog-Listing-Ad-_4_-2.webp","width":1200}{% endraw %}{% end_module_attribute %}{% module_attribute "image_link" is_json="true" %}{% raw %}{"no_follow":false,"open_in_new_tab":true,"rel":"noopener","sponsored":false,"url":{"content_id":null,"href":"https://www.odinschool.com/datascience-bootcamp","href_with_scheme":"https://www.odinschool.com/datascience-bootcamp","type":"EXTERNAL"},"user_generated_content":false}{% endraw %}{% end_module_attribute %}{% module_attribute "image_mobile" is_json="true" %}{% raw %}{"alt":"Mobile-version-of-blog-ads-_1_-Sep-04-2023-12-01-30-9740-PM","height":300,"loading":"lazy","max_height":300,"max_width":500,"size_type":"auto","src":"https://odinschool-20029733.hs-sites.com/hubfs/Mobile-version-of-blog-ads-_1_-Sep-04-2023-12-01-30-9740-PM.webp","width":500}{% endraw %}{% end_module_attribute %}{% module_attribute "label" is_json="true" %}{% raw %}null{% endraw %}{% end_module_attribute %}{% module_attribute "module_id" is_json="true" %}{% raw %}132581904694{% endraw %}{% end_module_attribute %}{% module_attribute "path" is_json="true" %}{% raw %}"/OdinSchool_V3/modules/Blog/Blog Responsive Image"{% endraw %}{% end_module_attribute %}{% module_attribute "schema_version" is_json="true" %}{% raw %}2{% endraw %}{% end_module_attribute %}{% module_attribute "smart_objects" is_json="true" %}{% raw %}null{% endraw %}{% end_module_attribute %}{% module_attribute "smart_type" is_json="true" %}{% raw %}"NOT_SMART"{% endraw %}{% end_module_attribute %}{% module_attribute "tag" is_json="true" %}{% raw %}"module"{% endraw %}{% end_module_attribute %}{% module_attribute "type" is_json="true" %}{% raw %}"module"{% endraw %}{% end_module_attribute %}{% module_attribute "wrap_field_tag" is_json="true" %}{% raw %}"div"{% endraw %}{% end_module_attribute %}{% end_module_block %}

 

  1. Zara, a global fashion retailer, leverages RL for order fulfillment. RL agents learn from order characteristics, inventory availability, and production capacities to determine optimal sourcing and allocation strategies, ensuring timely order fulfillment.

  2. Cisco employs RL techniques in supply chain risk management. RL agents learn from historical supply chain disruption data, market conditions, and risk indicators to  assess and mitigate potential risks, enabling proactive risk management strategies.

Robotics

quote
Reinforcement Learning provides the foundation for robots to learn from experience, acquire dexterity, and achieve advanced levels of autonomy, revolutionizing industries from manufacturing to healthcare.                                       - Dr. Sergey Levine, Assistant Professor, University of California, Berkeley
  1. Siemens implemented RL algorithms for robotic assembly tasks in manufacturing. RL agents learn to grasp and manipulate objects, perform assembly operations, and adapt to variations in object position and orientation, improving the efficiency and flexibility of robotic assembly lines

  2. Harvard researchers employed RL techniques to coordinate and control a large swarm of small robots called Kilobots. RL agents learn to communicate and collaborate with other Kilobots, self-organizing into desired formations and performing collective tasks.

  3. The ARM-H Robot developed at the University of Cambridge uses RL to adapt to changes in its physical structure. The RL agent learns to control the robot's movements, compensating for changes in joint stiffness or wear, allowing the robot to maintain precise and robust control.

  4. NVIDIA's Jetson AGX Xavier platform employs RL for autonomous flight control of drones. RL agents learn to navigate and perform complex maneuvers in dynamic environments, such as obstacle avoidance and optimal flight path planning.

  5. OpenAI developed a robotic system called Dactyl that uses RL to learn dexterous manipulation skills. The RL agent learns to control the robot's fingers and manipulate objects through trial and error, achieving impressive levels of object manipulation and fine-grained control.

Agriculture

quote
Through the application of Reinforcement Learning, we can create intelligent farming systems that leverage real-time data and insights to improve crop management, minimize waste, and support the global food security challenge.        - Dr. David Lobell, Professor of Earth System Science, Stanford University
  1. Fendt's Xaver is a precision fertilizer application system that utilizes RL techniques. RL agents learn from soil nutrient levels, plant growth stages, and field characteristics to optimize fertilizer application rates, reducing fertilizer waste and minimizing environmental impact.

  2. LettUs Grow employs RL techniques for greenhouse climate control. RL agents learn from sensor data, plant growth models, and environmental conditions to optimize factors such as temperature, humidity, and lighting, creating ideal growing conditions and maximizing crop quality.

 

{% module_block module "widget_8c733872-8270-41ac-bb4a-28fc6d67cca1" %}{% module_attribute "child_css" is_json="true" %}{% raw %}{}{% endraw %}{% end_module_attribute %}{% module_attribute "css" is_json="true" %}{% raw %}{}{% endraw %}{% end_module_attribute %}{% module_attribute "definition_id" is_json="true" %}{% raw %}null{% endraw %}{% end_module_attribute %}{% module_attribute "field_types" is_json="true" %}{% raw %}{"image_desktop":"image","image_link":"link","image_mobile":"image"}{% endraw %}{% end_module_attribute %}{% module_attribute "image_desktop" is_json="true" %}{% raw %}{"alt":"Blog-Listing-Ad-_4_-2","height":300,"loading":"lazy","max_height":300,"max_width":1200,"size_type":"auto","src":"https://odinschool-20029733.hs-sites.com/hubfs/Blog-Listing-Ad-_4_-2.webp","width":1200}{% endraw %}{% end_module_attribute %}{% module_attribute "image_link" is_json="true" %}{% raw %}{"no_follow":false,"open_in_new_tab":true,"rel":"noopener","sponsored":false,"url":{"content_id":null,"href":"https://www.odinschool.com/datascience-bootcamp","href_with_scheme":"https://www.odinschool.com/datascience-bootcamp","type":"EXTERNAL"},"user_generated_content":false}{% endraw %}{% end_module_attribute %}{% module_attribute "image_mobile" is_json="true" %}{% raw %}{"alt":"Mobile-version-of-blog-ads-_1_-Sep-04-2023-12-02-31-5860-PM","height":300,"loading":"lazy","max_height":300,"max_width":500,"size_type":"auto","src":"https://odinschool-20029733.hs-sites.com/hubfs/Mobile-version-of-blog-ads-_1_-Sep-04-2023-12-02-31-5860-PM.webp","width":500}{% endraw %}{% end_module_attribute %}{% module_attribute "label" is_json="true" %}{% raw %}null{% endraw %}{% end_module_attribute %}{% module_attribute "module_id" is_json="true" %}{% raw %}132581904694{% endraw %}{% end_module_attribute %}{% module_attribute "path" is_json="true" %}{% raw %}"/OdinSchool_V3/modules/Blog/Blog Responsive Image"{% endraw %}{% end_module_attribute %}{% module_attribute "schema_version" is_json="true" %}{% raw %}2{% endraw %}{% end_module_attribute %}{% module_attribute "smart_objects" is_json="true" %}{% raw %}null{% endraw %}{% end_module_attribute %}{% module_attribute "smart_type" is_json="true" %}{% raw %}"NOT_SMART"{% endraw %}{% end_module_attribute %}{% module_attribute "tag" is_json="true" %}{% raw %}"module"{% endraw %}{% end_module_attribute %}{% module_attribute "type" is_json="true" %}{% raw %}"module"{% endraw %}{% end_module_attribute %}{% module_attribute "wrap_field_tag" is_json="true" %}{% raw %}"div"{% endraw %}{% end_module_attribute %}{% end_module_block %}
  1. Cargill's Dairy Enteligen platform utilizes RL algorithms for livestock management. RL agents learn from sensor data, animal behavior, and health indicators to optimize feeding schedules, detect anomalies, and improve overall herd health and productivity.

  2. John Deere's GreenON platform utilizes RL algorithms for crop yield optimization. RL agents learn from historical yield data, weather conditions, and field characteristics to generate optimal planting recommendations, maximizing crop yield and profitability.

  3. Bonirob, developed by Deepfield Robotics, utilizes RL algorithms for precision irrigation. RL agents learn from sensor data, crop water requirements, and soil conditions to optimize irrigation scheduling, ensuring efficient water usage and reducing water waste.

Finance

quote
Reinforcement Learning is poised to revolutionize the finance industry by enabling personalized financial services, optimizing trading execution, and automating complex decision-making processes.                                                                                       - Dr. Stefano Pasquali, Executive Director, UBS Investment Bank
  1. American Express employs RL techniques for customer churn prediction. RL agents learn from customer transaction data, usage patterns, and behavior to identify customers at risk of churning, enabling proactive retention strategies and personalized offers.

  2. Uber uses RL algorithms for dynamic pricing of its ride-sharing services. RL agents learn from supply-demand dynamics, traffic conditions, and user behavior to set optimal prices in real-time, maximizing revenue while balancing rider demand and driver availability.

  3. Jump Trading, a proprietary trading firm, utilizes RL in high-frequency trading strategies. RL agents learn from tick-level market data, order book dynamics, and latency considerations to execute trades rapidly and exploit short-term market inefficiencies.

  4. PayPal employs RL algorithms for fraud detection and prevention. RL agents learn from transaction data, user behavior patterns, and fraud indicators to identify suspicious activities, reducing fraudulent transactions and protecting customer accounts.

  5. Citadel Securities, a leading market maker, utilizes RL algorithms in their algorithmic trading strategies. RL agents learn from market data, order book dynamics, and historical trade patterns to make real-time trading decisions, optimizing trade execution and liquidity provision.

  6. LOXM is an RL-based algorithmic trading system developed by JP Morgan. It learns optimal trading strategies, dynamically adjusting trade execution parameters to achieve better performance in stock trading.

  7. Lemonade an insurance company, uses RL to automate and optimize claims handling processes. The RL agent learns to assess claims, verify information, and process payments efficiently, improving speed and accuracy.

Autonomous Vehicles

quote
Reinforcement Learning plays a pivotal role in training autonomous vehicles to understand and respond to real-world scenarios, improving their ability to make split-second decisions and prevent accidents. It can also handle rare and edge cases, adapt to new environments, and continuously improve their driving skills over time.                                                                                                                                   - Dr. Raquel Urtasun, Chief Scientist, Uber ATG, and Associate Professor, University of Toronto

  1. Waymo, a leading autonomous vehicle company, uses RL for self-driving cars. RL agents learn from sensor data, such as cameras and lidar, to make driving decisions like lane keeping, adaptive cruise control, and object detection, improving safety and efficiency.

  2. Tesla's Autopilot system incorporates RL for collision avoidance. RL agents learn from sensor data and human driver behavior to make real-time decisions, such as emergency braking or evasive maneuvers, to avoid potential collisions on the road.

  3. BMW developed a Remote Valet Parking Assistant using RL. RL agents learn from sensor data, parking lot maps, and vehicle dynamics to autonomously navigate and park the vehicle in tight parking spaces without human intervention.

  4. Lyft employs RL algorithms for optimizing ride-hailing services. RL agents learn from historical demand patterns, traffic conditions, and driver availability to allocate drivers efficiently, reduce wait times, and improve overall service quality.

  5. Roborace is an autonomous racing competition that utilizes RL techniques. RL agents learn from race track data, vehicle dynamics, and optimal racing lines to autonomously control race cars, competing against each other at high speeds.

  6. Wing, a subsidiary of Alphabet, utilizes RL for autonomous delivery drones. RL agents learn from sensor data, airspace regulations, and package delivery requirements to autonomously navigate and deliver packages to specified locations.

Energy

quote
With Reinforcement Learning, we can unlock the potential of smart grids, enabling autonomous decision-making, load balancing, and demand forecasting for more reliable and resilient energy systems.                                                                                  - Dr. Steven Low, Professor of Computer Science and Electrical Engineering, California Institute of Technology (Caltech)
  1. Engie, a global energy company, employs RL algorithms for energy trading and pricing. RL agents learn from historical market data, supply-demand dynamics, and price signals to optimize trading strategies, maximize profitability, and manage energy portfolios.

  2. Tesla utilizes RL techniques for energy storage optimization in their Powerpack and Powerwall systems. RL agents learn from electricity price data, demand patterns, and renewable energy generation forecasts to optimize energy

Related Articles